Euclid's Isosceles Proposition

Euclid's Isosceles postulate described that the base angles of an isosceles triangle are equal.

Figure 1:

Proof:

- 1. We are given that $\triangle ABC$ is an isosceles triangle and therefore, AB=AC.
- 2. Extending AB and AC indefinitely, we put a points, D and E, on each ray, equal distances apart from B and C. Therefore, AD = AE.
- 3. $\angle DAC = \angle EAB$ because they are the same angle.
- 4. Therefore, $\triangle DAC \cong \triangle EAB$ by side-angle-side.
- 5. That will also make $\angle ADC = \angle AEB$ and makes DC = EB by side-angle-side.
- 6. Since BD = AD AB, CE = AE AC, AB = AC, and AD = AE. So BD = CE all by construction of Figure 1.

- 7. By the side-angle-side theorem, $\triangle BDC \cong \triangle CEB$.
- 8. Therefore, $\angle DBC = \angle ECB$.
- 9. Since, $\angle ABC = \deg 180 \angle DBC$, and $\angle ACB = \deg 180 \angle ECB$. Then, $\angle ABC = \angle ACB$.